RIQUALIFICAZIONE CAMPO DI CALCIO COMUNALE REALIZZAZIONE NUOVI SPOGLIATOI

sito in via Alessandro Manzoni - Montelupone (MC)

PROGETTO ESECUTIVO

STATO DI PROGETTO - EDIFICIO SPOGLIATOI

RELAZIONE SUI MATERIALI

COMUNE DI MONTELUPONE

Il Sindaco Il RUP

ROLANDO PECORA ANTONIO SPACCESI

PROGETTISTA: Ing. GIACOMO COMITE

iscritto albo Ing. FERMO n. A323

TAVOLA **B.2.d** Integrazione AGOSTO 2022

Relazione sui Materiali

La presente relazione riporta i dati necessari all'identificazione e alla qualificazione dei materiali strutturali adoperati nell'opera in oggetto, nonché le procedure di accettazione previste dalle vigenti Norme Tecniche.

L'opera, oggetto della presente progettazione strutturale, è realizzata mediante l'utilizzo di Conglomerato Cementizio Armato e profilati in acciaio.

Il Conglomerato Cementizio Armato (spesso definito impropriamente Cemento Armato) è ottenuto inglobando all'interno di un conglomerato di cemento ed inerti (definito Calcestruzzo) degli elementi in acciaio sotto forma di barre opportunamente modellate, che hanno l'importante compito di assorbire gli sforzi di trazione.

Per ottenere un calcestruzzo armato con buone caratteristiche meccaniche, è necessario che i materiali che lo costituiscono rispettino i criteri di conformità fissati dalla normativa.

In particolare, verranno dapprima riportati i requisiti che i componenti devono possedere per realizzare un calcestruzzo di buona qualità e, in seguito, analizzate le caratteristiche meccaniche del calcestruzzo armato adoperato, illustrando le prescrizioni relative al conglomerato cementizio e quelle relative all'acciaio.

Tali prescrizioni conterranno anche le indicazioni atte a garantire la lavorabilità dell'impasto e la durabilità dell'opera, in relazione alle condizioni ambientali del sito di costruzione.

Ciò comporta determinate scelte progettuali, come assegnare un valore adeguato di copriferro minimo (inteso come lo spessore minimo di calcestruzzo che ricopre le armature) ai fini della protezione del calcestruzzo armato contro la corrosione delle armature metalliche.

Componenti del calcestruzzo

Come già accennato, il calcestruzzo è costituito da un aggregato di inerti (sabbia e ghiaia o pietrisco) legati da una pasta cementizia, composta da acqua e cemento.

Oltre ai componenti normali, è consentito l'uso di aggiunte (ceneri volanti, loppe granulate d'altoforno e fumi di silice) e di additivi chimici (acceleranti, ritardanti, aeranti, ecc.), in conformità a quanto previsto dal paragrafo D.M. 17/1/2018.

Cemento

La fornitura del cemento sarà effettuata con l'osservanza delle condizioni e modalità di cui all'art.3

della legge 26/5/1965 n.595. Verrà impiegato cemento conforme alla norma armonizzata UNI EN 197.

Aggregati

Sono idonei alla produzione del calcestruzzo per uso strutturale gli aggregati ottenuti dalla lavorazione di materiali naturali, artificiali, ovvero provenienti da processi di riciclo, conformi alla norma europea armonizzata UNI EN 12620 e, per gli aggregati leggeri, alla norma europea armonizzata UNI EN 13055-1.

L'attestazione della conformità di tali aggregati deve essere effettuata ai sensi del DPR n. 246/93. Inoltre, gli aggregati riciclati devono rispettare, in funzione della destinazione finale del calcestruzzo e delle sue proprietà prestazionali, dei requisiti chimico-fisici aggiuntivi, rispetto a quelli fissati per gli aggregati naturali, secondo quanto prescritto dalle norme UNI 8520-1:2005 e UNI 8520-2:2005. Ad ogni modo, la dimensione massima dell'inerte sarà commisurata, per l'assestamento del getto, ai vuoti tra le armature e tra i casseri tenendo presente che il diametro massimo dell'inerte non dovrà superare: la distanza minima tra due ferri contigui ridotta di 5 mm, 1/4 della dimensione minima della struttura e 1/3 del copriferro.

Acqua di impasto

L'acqua di impasto, ivi compresa quella di riciclo, dovrà essere conforme alla norma UNI EN 1008:2003.

Additivi

Gli additivi chimici, utilizzati per migliorare una o più prestazioni del calcestruzzo, devono essere conformi alla norma europea armonizzata UNI EN 934-2.

Aggiunte

Nei calcestruzzi è ammesso l'impiego di aggiunte, in particolare di ceneri volanti, loppe granulate d'altoforno e fumi di silice, purché non ne vengano modificate negativamente le caratteristiche prestazionali. Le ceneri volanti devono soddisfare i requisiti della norma europea UNI EN 450-1. Per quanto riguarda invece l'impiego bisogna fare riferimento alle norme UNI EN 206-1:2006 e UNI 11104:2004. I fumi di silice, infine, devono soddisfare i requisiti della norma europea UNI EN 13263-1.

Calcestruzzo

Per il calcestruzzo preconfezionato o confezionato in opera per strutture armate, così come stabilito successivamente nella relazione di calcolo e in conformità alle seguenti norme:

- D.M. 17 gennaio 2018, Cap 4 e 11
- UNI-EN 206-1

- UNI-EN 12620
- UNI 197/1

si richiedono le seguenti caratteristiche:

Descrizione	Fondazione	Elevazione
Classe di calcestruzzo	C25/30	C25/30
		C28/35
Resistenza a compressione sui cubetti	300	300
Rck [daN/cm ²]		350
Classe di consistenza	S3-S4	S4
Classe di esposizione	XC3	X0
Copriferro minimo [mm]	35	35
Massimo rapporto acqua/cemento		
Dosaggio di cemento minimo [kg/m³]		
Impiego di additivi	No	No
Controllo di accettazione di tipo	A	A

Definita la classe di calcestruzzo adoperata, è possibile calcolare tutti i parametri di resistenza che ne caratterizzano il comportamento, sia a compressione che a trazione, come riportato nelle seguenti espressioni, in cui i parametri di resistenza vanno espressi in N/mm2:

Rck = Resistenza cubica

f ck = 0.83 Rck = resistenza cilindrica

f cm = fck + 8 = Valore medio della resistenza cilindrica

E = c 22000 [fcm / 10] 0.3 = Modulo Elastico secante tra la tensione nulla e 0.40 fcm

fcd = fck / c = Resistenza di calcolo a compressione, con c pari a 1.6

f cd = 0.85 fcd = Resistenza di calcolo a compressione ridotta, per i carichi di lunga durata

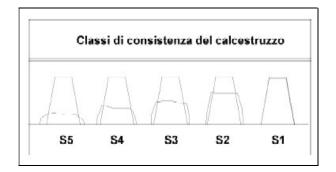
f ctm = 0.30 fck 2/3 = Resistenza media a trazione f ctk = 0.7 fctm = Resistenza caratteristica a trazione

f cfk = 1.2 fctk = Resistenza caratteristica a trazione per flessione

f ctd = fctk / c = Resistenza di calcolo a trazione

f cfd = fcfk / c = Resistenza di calcolo a trazione per flessione

Lavorabilità dell'impasto


La lavorabilità, ovvero la facilità con cui viene mescolato l'impasto, varia in funzione del tipo di calcestruzzo impiegato, dipende dalla granulometria degli inerti, dalla presenza o meno di additivi e aumenta in relazione al quantitativo di acqua aggiunta. Inoltre, la lavorabilità aumenta al diminuire

della consistenza, che rappresenta il grado di compattezza dell'impasto fresco.

La classe di consistenza del calcestruzzo da utilizzare viene fissata in base all'esigenza che l'impasto rimanga fluido per il tempo necessario a raggiungere tutte le parti interessate dal getto, senza che perda di omogeneità ed in modo che, a compattazione avvenuta, non rimangano dei vuoti.

Il calcestruzzo viene quindi classificato, a seconda della sua consistenza, sulla base dell'abbassamento al cono, definito Slump ed identificato da un codice (da S1 a S5), che corrisponde ad un determinato intervallo di lavorabilità, espresso mediante la misura dello Slump, in mm. La lavorabilità cresce all'aumentare del numero che indica la classe.

Considerare, ad esempio, un calcestruzzo con classe di consistenza S3, caratterizzato da uno slump compreso tra 100 e 150 mm, significa che, se sottoposto alla prova di abbassamento del cono (slump test), il provino troncoconico di calcestruzzo fresco, appena sformato, subisce un abbassamento compreso in quell'intervallo.

La scelta della classe di consistenza del calcestruzzo è legata alla lavorabilità che ci si aspetta dall'impasto per il tipo di opera che si deve andare a realizzare.

Classe di Consistenza	Slump (mm)	Applicazioni
S1 (Terra umida)	10 - 40	pavimenti messi in opera con vibro finiture
S2 (Terra plastica)	50 - 90	strutture circolari (silos, ciminiere)
S3 (semi fluida)	100 - 150	strutture non armate o poco armate
S4 (fluida)	160 - 210	strutture mediamente armate
S5 (super fluida)	oltre 210	strutture fortemente armate con ridotta sezione e/o complessa geometria

Per la quasi totalità delle opere in calcestruzzo armato gettato in casseforme, ci si aspetta una lavorabilità che ricada tra la classe di consistenza semi-fluida (S3) e quella super-fluida (S5). Per

l'opera in esame, in base ai criteri esposti, si è scelto di utilizzare un calcestruzzo appartenente alla Classe di consistenza S4.

DIAMETRO MASSIMO AGGREGATI:

\emptyset max $\leq \frac{3}{4}$ C (dove C: copriferro)	(³ / ₄ x 35mm)	26,25mm
Ømax < imin-5 mm (imin interferro minimo)	(20mm-5mm)	15,00mm
Ømax < ½Smin (Smin sezione minima)	(1/4 15mm)	37,5mm

Ne consegue che l'inerte massimo deve avere dimensione <= 15mm

DEFINIZIONE I	DEL COPRIFERRO	140
Vita utile di progetto		< 100 anni
Classe di resistenza del calce	struzzo	C25/30
Elemento dalla forma simile	ad una soletta	no
Controllo di qualità della pro	duzione del calcestruzzo	si
Tipologia di acciaio		ordinario
Diametro della barra da carp	penteria utilizzata	8 10 12 16
Numero di barre raggruppat	е	2
Classe di esposizione:		XD1
XD1	Corrosione indotta	a da cloruri
	DESCRIZIONE DELL'AMBIENTE	
	umidità rilevante	
Esempi informati	vi di situazioni a cui possono applicarsi	le classi di esposizione
Sup	erfici di calcestruzzo esposte ad atmosfe	era salina

Analisi di durabilità e calcolo del copriferro

1.1 INTRODUZIONE

Una struttura durevole deve soddisfare i requisiti di attitudine al servizio, resistenza e stabilità durante la sua vita utile di progetto, senza presentare perdite significative di funzionalità né richiedere manutenzione straordinaria eccessiva.

La protezione richiesta per la struttura deve essere stabilita considerandone l'utilizzo previsto, la vita utile di progetto, il programma di manutenzione e le azioni.

1.2 REQUISITI DI DURABILITA'

Per la valutazione della vita utile di progetto richiesta dalla struttura, devono essere prese adeguate disposizione al fine di proteggere ogni elemento strutturale dalle azioni ambientali.

I requisiti di durabilità devono essere presi in conto quando si considerano:

- -La concezione della struttura;
- -La scelta dei materiali;
- -I dettagli costruttivi;
- -L'esecuzione;
- -Il controllo di qualità;
- -Le verifiche:
- -Particolari disposizioni (Per esempio utilizzo di acciaio inossidabile, rivestimenti, protezione catodica);

La vita utile di progetto richiesta dalla struttura coincide con la definizione di "vita nominale" specificata al paragrafo 2.4.1 delle NTC08.

La vita nominale di un'opera strutturale $V \, \mathbb{N} \, \hat{\mathbf{e}}$ intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale $\hat{\mathbf{e}}$ destinata. La vita nominale dei diversi tipi di opere $\hat{\mathbf{e}}$ quella riportata nella Tab. 2.4.I e deve essere precisata nei documenti di progetto.

TIPI DI COSTRUZIONE	VN
Opere provvisorie	≤ 10 anni
Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale	≥ 50 anni
Grandi opere, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica	≥ 100 anni

Tabella 2.4.1 -Vita nominale VN per diversi tipi di opere

Per la struttura in esame si assume una vita utile di progetto: < 100 anni

Si riportano i seguenti requisiti della struttura:

Classe di resistenza del calcestruzzo: C25/30

- Elemento dalla forma simile ad una soletta: no

Controllo di qualità della produzione del calcestruzzo: si

- Tipologia di acciaio: ordinario

"Cmin,b" è il copriferro necessario alla trasmissione delle tensioni tangenziali di aderenza; esso è da assumersi pari al diametro della barra quando l'armatura è isolata e nel caso di armature raggruppate si dovrà uguagliare al diametro equivalente delle barre:

$$\phi_{eq} = \phi \sqrt{n_b} \le 55mm \quad (1.4-3)$$

Se la dimensione massima nominale dell'aggregato è maggiore di 32 allora "Cmin,b" deve essere aumentato di 5mm.

Il numero di barre reggruppate è: 2 Il diametro equivalente delle barre è: 23 mm

Copriferro minimo per la trasmissione delle tensioni tangenziali di aderenza:

Cmin,b = 23 mm

"Cmin,dur" è il copriferro minimo correlato alle condizioni ambientali, la sua determinazione è legata alla classe strutturale, parametro che tiene conto della vita nominale della struttura, e alla classe ambientale, parametri che tengono conto della degradazione a cui potrebbe essere sottoposto il manufatto a causa dell'esposizione ambientale; essi sono stabiliti attraverso le classi di esposizione ambientali.

La classe strutturale di riferimento è la "S4" e sulla base delle inidicazioni del prospetto 4.3N dell'Eurocodice 2, si definisce la classe strutturale per la costruzione in esame.

	Classi di esposizione			
	X0/ XC1	XC2/ XC3	XC4/ XD1/ XD2/ XS1	XD3/ XS2/ XS3
Vita utile nominale di 100 anni	Aumentare di 2 classi	Aumentare di 2 classi	Aumentare di 2 classi	Aumentare di 2 classi
Classe di resistenza del calcestruzzo	≥ C32/40 Ridure 1 classe	≥ C35/45 Ridurre 1 classe	≥ C40/50 Ridurre 1 classe	≥ C45/55 Ridurre 1 classe
Elemento di forma simile ad una soletta	Ridurre 1 classe	Ridurre 1 classe	Ridurre 1 classe	Ridurre 1 classe
Controllo di qualità speciale della produzione del calcestruzzo	Ridurre 1 classe	Ridurre 1 classe	Ridurre 1 classe	Ridure 1 classe

prospetto 4.3N -Classificazione strutturale raccomandata

Sulla base della precedente classificazione (pr.4.3N) si adotta la seguente classe strutturale:

53

Definita la classe strutturale il valore del copriferro minimo "Cmin,dur" si ricava attraverso il prospetto 4.4N per acciai ad armatura ordinaria; ovvero al prospetto 4.5N per acciai da precompressione. Di seguito il valore ricavato dalla tabella:

Copriferro minimo per requisiti con riferimento alla durabilità:

C.min dur = 30 mm

Sulla base della formula 1.4-2 si definisce il coproferro minimo che soddisfi i requisiti di durabilità e trasmissione degli sforzi

Copriferro minimo adottato:

C,min = 30 mm

Il corpiferro nominale si ricava dalla formula 1.4-1, esso rappresenta il valore di progetto necessario per la definizione dell'altezza utile della sezione, riportato anche sui disegni strutturali.

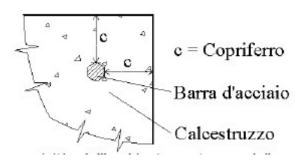
Copriferro nominale:

C,nom = 35 mm

Resoconto	02 1000000 O	Sec. 2 (1997)
Classe strutturale e classe di esposizione	S3	XD1
Tolleranza di esecuzione relativa al copriferro ΔCdev	5	mm
Copriferro minimo per garantire l'aderenza Cmin,b	23 mm	
Copriferro minimo per garantire la durabilità Cmin,dur	30 mm	
Copriferro minimo adottato Cmin	30	mm
Copriferro nominale Cnom	35	mm

Durabilità

La durabilità di un'opera in calcestruzzo armato dipende fortemente dalle condizioni ambientali del sito, di edificazione dell'opera stessa. Inoltre, per resistere alle azioni ambientali, il calcestruzzo deve possedere dei requisiti che tengano conto della vita di esercizio prevista per l'opera da realizzare. E' possibile suddividere le diverse parti di una struttura, a seconda della loro esposizione all'ambiente esterno, in modo da individuare le corrispondenti classi di esposizione. A seconda delle situazioni esterne ambientali, più o meno aggressive, è possibile, definire più classi di esposizione, come prescritto dalle UNI-EN 206-1:2006 e come riportato nella seguente tabella:


Classe	Ambiente
XU	Assenza di corrosione
XC	Corrosione da carbonatazione
XD	Corrosione da cloruri non marini
XS	Corrosione da cloruri marini
XF	Degrado per cicli gelo - disgelo
XA	Attacchi chimici

Le Norme Tecniche per le Costruzioni, invece, distinguono le condizioni ambientali in ordinarie, aggressive e molto aggressive, e definiscono, per ciascuna condizione, le corrispondenti classi di esposizione, come di seguito indicato in tabella

Condizioni ambientali	Classi di esposizione	
Ordinarie	X0, XC1, XC2, XC3,	
Aggressive	XC4, XD1, XS1	
Molto Aggressive	XD2, XD3, XS2, XS3	

Descrizione	Fondazione	Elevazione
Classe Esposizione	X0	X0
a/c max		
Dosaggio di cemento minimo [kg/m³]		
Rck min [daN/cm²]	150	150

Come già detto, all'accentuarsi dell'intensità dell'attacco dell'ambiente esterno, oltre ad incrementare il quantitativo di cemento nell'impasto (riducendo quindi il rapporto acqua-cemento), è necessario aumentare lo spessore di calcestruzzo che ricopre le armature. Tale ricoprimento di calcestruzzo, generalmente definito "Copriferro", è necessario per proteggere sia le barre di acciaio dai fenomeni di corrosione e dagli attacchi degli agenti esterni e, soprattutto, per assicurare una adeguata trasmissione delle forze di aderenza.

Lo spessore del copriferro viene dimensionato in funzione della aggressività dell'ambiente esterno, della classe di resistenza del calcestruzzo e della vita nominale della struttura. Nella tabella seguente, vengono indicati, espressi in mm, i copriferri minimi da adottare prescritti dalle Norme Tecniche per le Costruzioni, sia per elementi a piastra che per altri elementi costruttivi:

Descrizione	Fondazione	Elevazione
Classe di resistenza	C25/30	C25/30
Ambiente	X0	X0
Copriferro minimo [mm]	25	25

Controllo di accettazione del calcestruzzo

Le Norme tecniche per le Costruzioni fissano l'obbligo di eseguire controlli sistematici in corso d'opera per verificare la conformità delle caratteristiche del calcestruzzo messo in opera rispetto a

quello stabilito dal progetto e sperimentalmente verificato in sede di valutazione preliminare.

Il prelievo dei campioni per il controllo di accettazione verrà eseguito secondo le modalità prescritte dal del D.M.17/01/2018.

Il controllo da eseguire, per l'opera in oggetto, in funzione del quantitativo di calcestruzzo in accettazione è quello di tipo A.

Il controllo di accettazione è positivo ed il quantitativo di calcestruzzo accettato se risultano verificate le disuguaglianze di cui alla tabella seguente:

Controllo di tipo A	
R1 > Rck - 3.5	
Rm > Rck + 3.5 Numero Prelievi = 3	

dove: Rm = Resistenza media dei prelievi, espressa in N/mm²

R1 = Minore valore di resistenza dei prelievi, espresso in N/mm²

Acciaio

L'acciaio dolce da carpenteria utilizzato è del tipo B450C, per gli elementi in Fondazione, e B450C per quelli in Elevazione, qualificato secondo le procedure D.M. 17/01/2018

In conformità alle seguenti norme:

- D.M. 17 gennaio 2018 Cap. 11
- UNI-EN 7438 UNI 10080

si richiedono, per l'acciaio, le seguenti caratteristiche meccaniche:

Descrizione	Fondazione	Elevazione
Tensione caratteristica di snervamento fyk [daN/cm²]	≥ 4500	≥ 4500
Tensione caratteristica di rottura ftk [daN/cm²]	≥ 5400	≥ 5400
Allungamento (Agt)k [%]	≥ 7.5	≥ 7.5
Rapporto di sovraresistenza ftk/fyk [%]	1.15≤ftk/fyk<1.35	1.15≤ftk/fyk<1.35
Rapporto tens. effettiva/nominale (fy/fynom)k	≤ 1.25	≤ 1.25
Tensione di calcolo di snervamento [daN/cm²]	3913	3913
Modulo Elastico Normale [daN/cm²]	2100000	2100000

Il campionamento e le prove saranno condotte secondo quando previsto dal D.M. 17/01/2018.

ANCORAGGI CHIMICI E LUNGHEZZE DI ANCORAGGIO

Calcolo lunghezza minima tirafondo

Diametro tirafondo d =	12	mm
Area resistente A _{res} =	0,843	cm ²
Materiale tirafondo	S275	
Tensione snervamento f _{yk} =	2750	daN/cm ²
Coefficiente di sicurezza per la resistenza γ_{M0} =	1,5	
Sforzo Massimo N _{t,Rd} =	1024	daN
Classe calcestruzzo	C25/30	
Resistenza cubica caratteristica R _{ck} =	30	N/mm ²
Resistenza cilindrica caratteristica f _{ck} =	25	N/mm ²
Coefficiente parziale di sicurezza γ_c =	1,5	
Resistenza caratteristica a trazione f _{ctk} =	1,80	N/mm ²
Resistenza tangenziale caratteristica di aderenza f _{bk} =	4,04	N/mm ²
Resistenza tangenziale di aderenza f _{bd} =	2,69	N/mm ²
Lunghezza tirafondo fuori dal Pilastro L _{fuori pil.} =	10	cm
Lunghezza minima tirafondo all'interno del pilastro I _{b,min} =	11	cm
Lunghezza tirafondo Totale L _{tot} =	21	cm

Calcolo lunghezza minima tirafondo

Diametro tirafondo d =	16	mm
Area resistente A _{res} =	1,570	cm ²
Materiale tirafondo	S275	
Tensione snervamento f_{yk} =	2750	daN/cm ²
Coefficiente di sicurezza per la resistenza γ_{M0} =	1,5	
Sforzo Massimo N _{t,Rd} =	1345	daN
Classe calcestruzzo	C25/30	
Resistenza cubica caratteristica R _{ck} =	30	N/mm ²
Resistenza cilindrica caratteristica f _{ck} =	25	N/mm ²
Coefficiente parziale di sicurezza γ_c =	1,5	
Resistenza caratteristica a trazione f _{ctk} =	1,80	N/mm ²
Resistenza tangenziale caratteristica di aderenza f _{bk} =	4,04	N/mm ²
Resistenza tangenziale di aderenza f _{bd} =	2,69	N/mm ²
Lunghezza tirafondo fuori dal Pilastro L _{fuori pil.} =	10	cm
Lunghezza minima tirafondo all'interno del pilastro $I_{b,min}$ =	10	cm
Lunghezza tirafondo Totale L _{tot} =	20	cm

Calcolo lunghezza minima tirafondo

Diametro tirafondo d =	20	mm
Area resistente A _{res} =	2,450	cm ²
Materiale tirafondo	S275	
Tensione snervamento f _{yk} =	2750	daN/cm ²
Coefficiente di sicurezza per la resistenza γ_{M0} =	1,5	
Sforzo Massimo N _{t,Rd} =	2027	daN
Classe calcestruzzo	C25/30	
Resistenza cubica caratteristica R _{ck} =	30	N/mm ²
Resistenza cilindrica caratteristica f _{ck} =	25	N/mm ²
Coefficiente parziale di sicurezza γ_c =	1,5	
Coefficiente parziale di sicurezza γ_c = Resistenza caratteristica a trazione f_{ctk} =	•	N/mm ²
	1,80	N/mm ² N/mm ²
Resistenza caratteristica a trazione f _{ctk} =	1,80 4,04	
Resistenza caratteristica a trazione f_{ctk} = Resistenza tangenziale caratteristica di aderenza f_{bk} =	1,80 4,04	N/mm ²
Resistenza caratteristica a trazione f_{clk} = Resistenza tangenziale caratteristica di aderenza f_{bk} = Resistenza tangenziale di aderenza f_{bd} =	1,80 4,04 2,69	N/mm ²

L'uso degli ancoraggi chimici si rende necessario a seguito del fatto che la scala è posta fisicamente tra due pareti in c.a., rendendo, praticamente, impossibile un getto contemporaneo (pareti-soletta scala).

Per cui terminato il disarmo delle pareti in c.a. si arma la soletta della scala, ed affinchè l'armatura di detta soletta venga innestata nelle pareti, occorre l'utilizzo di ancoranti (si è preferito quelli di tipo chimico).

Essendo la soletta incastrata lungo tutto il perimetro dei setti, e considerate le sollecitazioni derivate, sostanzialmente si hanno sollecitazioni di trazione di modestissima entità, si ritiene superflua qualsiasi altra tipologia di verifica.

Tutte le lunghezze di sovrapposizione non indicate negli elaborati grafici, laddove non è indicato detto valore si fa riferimento alla sovrapposizione minima di 60diametri delle barre interessate.

ELEMENTI IN ACCIAIO

ACCIAI LAMINATI A CALDO S275JR (UNI 10025-2)

BULLONI DI CLASSE APPARTENENTI ALLA NORMA UNI EN ISO 898-1:2001

VITI CLASSE 8.8

DADI CLASSE 8

ROSETTE ACCIAIO C 50 UNI EN 10083-2:2006

SALDATURE AD ARCO CON ELETTRODO RIVESTITO UNI EN ISO 4063:2001

TOLLERANZE +/- 0,4mm

CLASSE DI ESECUZIONE DELLE STRUTTURE IN ACCIAIO

Il 1 luglio 2014 è entrata in vigore la normativa UNI EN 1090.

Per farlo è necessario definire prima la Classe di Conseguenza, la Categoria di Servizio e la Categoria di Produzione.

Secondo l'Eurocodice 0 (UNI EN 1990:2006 Appendice B), si definiscono le seguenti Classe di Conseguenze:

NEL PROGETTO IN ESSERE SI OTTIENE:

Classe di Conseguenze	Descrizione	Esempi di edifici e di opere di ingegneria civile
CC3	Elevate conseguenze per perdita di vite umane, o conseguenze molto gravi in termini economici, sociali o ambientali	Gradinate in impianti sportivi, edifici pubblici nei quali le conseguenze del collasso sono alte (per esempio una sala da concerti)
CC2	Conseguenze medie per perdita di vite umane, conseguenze considerevoli in termini economici, sociali o ambientali	Edifici residenziali e per uffici, edifici pubblici nei quali le conseguenze del collasso sono medie (per esempio un edificio per uffici)
CC1	Conseguenze basse per perdita di vite umane, e conseguenze modeste o trascurabili in termini e economici, sociali o ambientali	Costruzioni agricole, nei quali generalmente nessuno entra (per esempio magazzini, serre)

Secondo la UNI EN 1090-2:2011 - Esecuzione di strutture di acciaio e di alluminio (Parte 2: Requisiti tecnici per strutture di acciaio) Appendice B si definiscono le seguenti

Categorie di Servizio:

Categorie	Criteri
SC1	Strutture e componenti progettate solo per azioni quasi statiche (Esempio: Edifici) Strutture e componenti con connessioni progettate per azioni sismiche nelle regioni con bassa attività sismica e in DCL* Strutture e componenti progettati per le azioni a fatica degli apparecchi di sollevamento (classe S0)**
SC2	Strutture e componenti progettate per le azioni a fatica secondo EN 1993. [Esempi: ponti stradali e ferroviari, gru (classe da S1 a S9)**, strutture suscettibili alle vibrazioni indotte dal vento, dalla folla o dalla rotazione di macchine] Strutture e componenti con connessioni progettate per azioni sismiche nelle regioni con media o alta attività sismica e in DCM* e DCH*

Categorie di Produzione:

Categorie	Criteri
PC1	Componenti non saldati realizzati da prodotti di qualsiasi classe di acciaio Componenti saldati realizzati da prodotti di acciaio di classe minore a S355
PC2	Componenti saldati realizzati da prodotti di acciaio di classe S355 e maggiore Componenti essenziali per l'integrità strutturale che vengono assemblati mediante saldatura in cantiere Componenti prodotti mediante formatura a caldo o che ricevono un trattamento termico durante la fabbricazione Componenti di tralicci CHS che richiedono taglio finale del prodotto

A questo punto si è in grado di determinare la Classe di Esecuzione della struttura in acciaio in progetto utilizzando la seguente tabella:

Classi di conseguenza		GC1		CC2		CC3	
Categorie di servizio		SC1	SC2	SC1	SC2	SC1	SC2
Categorie di produzione	PC1	EXC1	EXC2	EXC2	EXC3	EXC3 (*)	EXC3 (*)
	PC2	EXC2	EXC2	EXC2	EXC3	EXC3 (*)	EXC4
(*) EXC4 per strutture speciali o strutture con conseguenze particolarmente gravi a seguito di un cedimento strutturale, secondo quanto richiesto da prescrizioni nazionali							

CLASSE DI CORROSIONE

CRC2 Protezione moderata

Componenti soggetti a sollecitazione di corrosione moderata

Componenti esterni visibili con requisiti superficiali principalmente decorativi

Contatto diretto con un ambiente industriale o fluidi industriali normali, ad es. refrigeranti e lubrificanti

Tolleranze

Tolleranze sul diametro per barre laminate a caldo (UNI EN 10060:2004)

Tutte le misure sono espresse in mm

Diametro	Tolleranza normale						
10		30		70	±1	140	±2
12		32	± 0,6	73		145	
13	± 0,4	35		75		150	
14		36		80		155	
15		38		85	A	160	
16		40		90	± 1,3	165	
18		42	± 0,8	95		170	
19		45 100	175	± 2,5			
20	± 0,5	48		105	± 1,5	180	12,5
22		50		110		190	
24		52		115		200	
25		55		120		220	± 3
26		60	±1	125		250	± 4
27		63		130	±2		
28		65		135			